p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.93C23, C23.51C24, C24.509C23, C22.102C25, C22.92+ 1+4, D42⋊15C2, C4⋊Q8⋊35C22, D4⋊13(C4○D4), D4⋊5D4⋊22C2, D4⋊6D4⋊25C2, D4⋊3Q8⋊25C2, (C4×D4)⋊50C22, (C2×C4).92C24, (C4×Q8)⋊49C22, C4⋊D4⋊85C22, C4⋊C4.300C23, (C2×C42)⋊64C22, (C23×C4)⋊44C22, C22⋊Q8⋊36C22, C22≀C2⋊10C22, C22.32C24⋊6C2, (C2×D4).475C23, D4○2(C22.D4), C4.4D4⋊29C22, C22⋊C4.26C23, (C2×Q8).293C23, C42.C2⋊58C22, C22.45C24⋊8C2, C22.11C24⋊21C2, C42⋊2C2⋊38C22, C42⋊C2⋊43C22, C22.19C24⋊32C2, C4⋊1D4.114C22, (C22×C4).372C23, C2.39(C2×2+ 1+4), C2.33(C2.C25), C22.33C24⋊6C2, (C22×D4).429C22, C22.D4⋊10C22, C22.53C24⋊15C2, C22.46C24⋊20C2, C22.36C24⋊16C2, C23.36C23⋊33C2, C22.47C24⋊19C2, C23.33C23⋊25C2, C22.34C24⋊12C2, (C2×C4×D4)⋊93C2, (C2×C4⋊C4)⋊77C22, C4.275(C2×C4○D4), (C2×C4○D4)⋊35C22, C22.41(C2×C4○D4), C2.58(C22×C4○D4), (C2×C22⋊C4)⋊51C22, (C2×C22.D4)⋊61C2, SmallGroup(128,2245)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.102C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=1, g2=b, ab=ba, dcd=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 916 in 576 conjugacy classes, 390 normal (122 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C22.D4, C4.4D4, C4.4D4, C42.C2, C42.C2, C42⋊2C2, C42⋊2C2, C4⋊1D4, C4⋊Q8, C23×C4, C22×D4, C22×D4, C2×C4○D4, C2×C4○D4, C2×C4×D4, C22.11C24, C23.33C23, C2×C22.D4, C22.19C24, C23.36C23, C22.32C24, C22.33C24, C22.34C24, C22.36C24, D42, D4⋊5D4, D4⋊5D4, D4⋊6D4, C22.45C24, C22.46C24, C22.47C24, C22.47C24, D4⋊3Q8, C22.53C24, C22.102C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C25, C22×C4○D4, C2×2+ 1+4, C2.C25, C22.102C25
(1 11)(2 12)(3 9)(4 10)(5 32)(6 29)(7 30)(8 31)(13 20)(14 17)(15 18)(16 19)(21 28)(22 25)(23 26)(24 27)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 16)(2 20)(3 14)(4 18)(5 25)(6 23)(7 27)(8 21)(9 17)(10 15)(11 19)(12 13)(22 32)(24 30)(26 29)(28 31)
(5 32)(6 29)(7 30)(8 31)(13 20)(14 17)(15 18)(16 19)
(1 24)(2 21)(3 22)(4 23)(5 19)(6 20)(7 17)(8 18)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)
(1 16)(2 13)(3 14)(4 15)(5 27)(6 28)(7 25)(8 26)(9 17)(10 18)(11 19)(12 20)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
G:=sub<Sym(32)| (1,11)(2,12)(3,9)(4,10)(5,32)(6,29)(7,30)(8,31)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,16)(2,20)(3,14)(4,18)(5,25)(6,23)(7,27)(8,21)(9,17)(10,15)(11,19)(12,13)(22,32)(24,30)(26,29)(28,31), (5,32)(6,29)(7,30)(8,31)(13,20)(14,17)(15,18)(16,19), (1,24)(2,21)(3,22)(4,23)(5,19)(6,20)(7,17)(8,18)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,16)(2,13)(3,14)(4,15)(5,27)(6,28)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;
G:=Group( (1,11)(2,12)(3,9)(4,10)(5,32)(6,29)(7,30)(8,31)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,16)(2,20)(3,14)(4,18)(5,25)(6,23)(7,27)(8,21)(9,17)(10,15)(11,19)(12,13)(22,32)(24,30)(26,29)(28,31), (5,32)(6,29)(7,30)(8,31)(13,20)(14,17)(15,18)(16,19), (1,24)(2,21)(3,22)(4,23)(5,19)(6,20)(7,17)(8,18)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,16)(2,13)(3,14)(4,15)(5,27)(6,28)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );
G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,32),(6,29),(7,30),(8,31),(13,20),(14,17),(15,18),(16,19),(21,28),(22,25),(23,26),(24,27)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,16),(2,20),(3,14),(4,18),(5,25),(6,23),(7,27),(8,21),(9,17),(10,15),(11,19),(12,13),(22,32),(24,30),(26,29),(28,31)], [(5,32),(6,29),(7,30),(8,31),(13,20),(14,17),(15,18),(16,19)], [(1,24),(2,21),(3,22),(4,23),(5,19),(6,20),(7,17),(8,18),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32)], [(1,16),(2,13),(3,14),(4,15),(5,27),(6,28),(7,25),(8,26),(9,17),(10,18),(11,19),(12,20),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | ··· | 2O | 4A | ··· | 4L | 4M | ··· | 4AB |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 | C2.C25 |
kernel | C22.102C25 | C2×C4×D4 | C22.11C24 | C23.33C23 | C2×C22.D4 | C22.19C24 | C23.36C23 | C22.32C24 | C22.33C24 | C22.34C24 | C22.36C24 | D42 | D4⋊5D4 | D4⋊6D4 | C22.45C24 | C22.46C24 | C22.47C24 | D4⋊3Q8 | C22.53C24 | D4 | C22 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 4 | 1 | 4 | 1 | 3 | 1 | 1 | 8 | 2 | 2 |
Matrix representation of C22.102C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | 4 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 2 | 4 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 4 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 3 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 3 |
0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,4,0,0,1,2,0,0,0,0,0,4,0,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,4,4,0,0,0,0,0,0,1,0,0,0,0,0,4,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,3,3,0,0,0,0,0,0,2,0,0,0,0,0,3,3] >;
C22.102C25 in GAP, Magma, Sage, TeX
C_2^2._{102}C_2^5
% in TeX
G:=Group("C2^2.102C2^5");
// GroupNames label
G:=SmallGroup(128,2245);
// by ID
G=gap.SmallGroup(128,2245);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,570,1684,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=1,g^2=b,a*b=b*a,d*c*d=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations